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Abstract: In microeconoretrics, consurption data is typically zero-inflated due to many individ-
vals recording no consumption. A mixture model can be appropriate for statistical analysis of such
data, with the Dependent Double-Hurdle model (DDH hereafter) oue specification that is frequently
adopted in cconometric practice. Bssentially, the DI model is designed to explain individual de-
rmand through a sequestial two-step process: a market participation decision (frst hurdle), lollowed
by @ consumption level decision (second hurdle) - specification of a non-zero correlation/covariance
parameter in the underlying bivariate utility structure allows for dependency hetween the hurdles,
A signilicant [eature of the majority of empirical DDH studies has been the lack of support for the
existence of dependency. This empirical phenomenon is studied from a theoretical perspective using
exarnples based on the bivariate normal, bivariate logistic, and bivariate Poisson distributions. The
Fisher [nformation matrix for the parameters of the model is considered, especially Lhe component
corresponding Lo the dependency parameter. The main finding is that the DDH model contains too
lintle statistical inforration to support estimation of dependency, even when dependency is truly
present. Consequently, the paper calis for the elimination of attempts to estimate dependency using
the DD frasuework. The advantage of this strategy is that it permits modelling based on flexible
distributional structures, for in the absence of dependency the underlying variables are independent.
Two approaches to model construction are explored: (i) models resulting from specifications for the
underlying ntility variables, and (i} models resulting from specifications for the hurdle variables.

1 Introduction

The Double-Hurdie model (DH hereafter) has
Been nsed In econoriies to analyse a wide range
of wdividual commodity demand and labour
sipply behaviour. In terms of commodity de-
raand, the DH model is designed to explain the
mechanism of individual demand through a se-
quential two-step process: a market participa-
tion decision (first hurdle}, followed by a con-
sutiption fevel decision (second hurdle). The
statistical origins of the model are due to Cragg
(31, and its bagis in conswiner choice theory is
cdue to Pudney [9‘ pp.}ﬁ(}l(ﬁ}.

The generalisation of the DH model to allow
for dependence between the participation and
consumption decisions - the Dependent Double-
Hurdle model {(DDH hereafter} - has recently
been the subject of erapirical attention. Impor-
tantly, the argnments mounted for this generali-
salbion have not been based on economic theory.

Rather, justification has been based on intuitive
behavioural grounds, and on statistical grounds,
In statistical terms, a parameter #, representing
dependency, is incorporated inte the DH model.
Typically, a DDH model nests its DH counter-
part through the restriction # = 0.

A summary of a number of published DDH
studies appears in Table 1. The entries in the
last column - “DDH vs DH” - indicate whether
the fitted DDH is either insignificant from
{insig), or significantly different to {sig), its
nested DH version. The relevant hypothesis
test showed that the data in the majority of the
studies did not support the DDH model over the
DH medel at any conventional tevel of signifi-
cance. The persistent finding against the DDH
model provides the motivation for this paper -
an explanation is sought for why DDH models
appear to be statistically indistingnishabie from
their nested DH counterparts.

Table I

Dependent Double-Hurdle Studies

Application: Demand for | Sample size | % of Os | DDH ve DH

Blaylock and Blisard {1} | Cigarettes (USA) 2962 60.7 insig
Burton et al. [2] Meat {UK]) 2144 6.3 insig
Gao et ol [4] Rice (USA) 4273 67.0 insig & sig
Garcia and Labeaga [3] [ Cigarettes (Spain) 23669 41.2 insig
Gould [6] Cheese (USA) 5017 58.0 sig
Jones [7] Cigarettes (UK) 1573 na insig
Jones [8] Cigarettes (UK) 2321 48.5 insig
Yen and Jones [10] Cheese (USA} 4245 181 nsig
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The DH and DDH models are members of the
class of hierarchical hmited and qualitative de-
pendent variable models. This class of model
often suffers parameter identification problems,
although detection of this typically surfaces only
when attempting Lo compute parameter esti-
wates. However, by focusing on the distribution
of the DDH mwodel {as opposed to secondary is-
sues such as the properties of estimators and
test statistics used in the model), the problem
of weakly identified parameters is shown to be
present {section 3}.

in the paper's remaining sections, the extent
of the identification problem is quantified using
Fusher's information to measure the amount of
1cal information on the parameters of the

stabis
model. Section 4 focuses on Fisher's informa-
tion an #, while in section 5, Fisher information
matrices are inspected.

The main suggestion of the paper, is that the
introduction of dependency into DI models
{thereby yielding a DDH model) iz a statisti-
cally spurious generalisation - the DDH rmodel
adds hitle to the informational content of its
nested DH counterpart. This seemingly nega-
tive onteome 15, however, of considerable ben-
efil to practitioners. In the absence of depen-
dency, there 13 greater opportunity to explore
more Hexible distributional forms. Section 6
concludes with a proposal on this theme.

2  Statistical Construction

Jegin by delining ¥7'" as the utility derived
Begin by defining Y, )
by an individual from market participation
b hvidual froy arket participation,
and Yo' the utility derived by an individual
rom consumption.  Assume (fc /) that
fre susnmption Assumne (for now) that
these variables are continuous, and real-valued.
Next, assume a parametric bivariate model for
Next, T tric b % lel f
(Y7, Y, ) is specified by assigning a joint cu-
mudative distribution function {edl}, dencted by
Flyrt uit), for real-valued pairs (y*,¥3*). The
cdf depends upon unknown parameters, one in
particualar being the dependency parameter 8,
mportantly, variables foand Yo are not
Irnportantly, variables ¥} b ¥y i
observed, The ohserved variable 12 individusl
consumption ¥ > (. The relationship between
YV and Y ois established by defining the
1 2 g =1
hurdle variables:

Yo=Y >0, Ve o= LY > 00 VST

where 1{4} is the indicator function, taking
vaine 1 if event A holds and O otherwise. ¥}
represents the first hurdle decision, and ¥y rep-
resents the second hurdle consumption. In gen-
eral, ¥,* and Yy are latent. Finally, to complete
the construction of the DDH model, individual

consumption
Y =YY,

Due to the sequential decomposition of the de-
cision, a zero observation on Y can oceur in
two ways: (i} if the first hurdle is not passed
(Y;* = 0), or (it) if the first hurdle is passed
but the second hurdle is not (¥ = 1 and
Yy = 0} Any positive-valued observation oc-
curs only when both hurdies are passed (¥* = |
and Yy > 0).

Under continuity, the probability density func-
tion (pdf) of ¥ is a continuous-discrete mixture,
with functional form depending upon the spec-
ification assumed for F. Denote it by

VR B 1)) ify =0
j(’)’)‘ { f(} ﬂ'ym 0.
When vy > 0, the f{y) component may be de
rived as follows:
foly) = - Pr{Y <y
+ = o rr
S+ By =¥

= %(le(zf)mf- (0,1),
where Fi{) denctes the marginal odf of ¥

{(z = 1,2). When y = 0, the fp component is
the probability mass at the origin:

Jo = P(Y:U)
FL (0] + By(0) — F(0,0).

fi

3 DBivariate MWNormal DDH

In this first example, assume (¥, ¥, s dis-
tributed according to the following bivariate
normal:

DR (]l #)

Without loss of generality, Var{Y|""} is nor-
malised to unity because in the construction of
the DDIH model all scale information on Y™ is
lost due fo the transformation of Y™ to Y7*. As
is well known, the dependency parameter 8 is
equivalent to the correlation coefficient hetween
Y7 and Yy'. There are four parameters in the
model {4, 1, 0%, 0).

For the bivariate normal DDH model, the joint
edf of (Y7, Y**) is given by:

RIS E * x y$$_‘ 3
Flyi"ys") = Q (311 WPJ]J“BT/;'X;())}

where 0}{-, -;#) denotes the odl of a standard-
iwed bivariate normal distribution with correla-
tion coeflicient 8. The cdf of ¥V, Pr(Y < y), is
given by: ®(—puy )+ Oz} — O —py, 2:8) ify > 0,
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and Bl )+ D=0 ey — U —p0y, —7 Fpay; 8)
il y = . Here () denoctes the cdf of a stan-
dardised umvariate normal distribution, and
z= Ayl o

fu Figure I, distributions of Y are plotted
for tliree lar-apart points in the parameter
space; namely, at (;1,1,;12:()‘2,F)) = (0,2,1,0),
(0,16, 1,05), (0,24, 1, -85}, The significant
{eature to notice, is that the three distributions
are alimost indistinguishable across the support
of ¥, Certainly, the fact that the distributions
arc not identical, is sufficient to identify the pa-
ramelers of the bivariate normal DDH model;

however, what Figure | reveals is that identifi-
cation is weak in the selected neighbourhoods
of the parameter space. Estimation of demon-
strably weakly-identified parameters must be of
considerable concern, for 1t can lead 1o compu-
tational problemns such as lack of convergence -
this in fact occurred in the Burton ef ol DDH
study, see {2, p.205].

In the following examples, attempts to quan-
tify the implications of weak identification in
the DDH model are undertaken using Fisher’s
wmformation, a well-known measuare of statistical
information.

Figure I: Distributions of Y (bivariate normal DIDH]
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4 Bivariate Logistic DDH

For this example, assume (Y5, Y)") iz dis

-
¥

and ¥Y5'". The parameters of the model are

(114 52, 9).

. . ) o r - For this specification, Fisher's information on 8,
tributed according to Gumbel’s Type I bivari-

4= Dloe 1YY mav be derived in cloge
ate logistic distribution with edf Fly*,v5*) L= f (89 log f(¥ )) » nay be derived in closed

form. Figure I plots ¢ against values of 1 in
the interval [—4, 2], The dashed curve bounds
Fisher's information on &, for all g, and 4 in
the parameter space. The solid curve depicts
Fisher's information on , setting py = 1 and
f = —0.5. Significantly, the plot provides evi-

equal to:

Fly ) Flus (0000 = Flyi™ )01 = Fys")),

far real-valued pairs (37", ¥5" ). The notation

Py = (1 +exp(—{y]" — fui)))i} dence for the claim:
(1 = 1,Z), corresponds to the cdl of a logis- i
tie randorn variable with mean o, and vari- <0 forall @ and p,,
arabie iy and van iy 4y =0

2o
ance 7 /3. Also, the dependency parameter ¢

5 such that -1 <
madel 14 is equivalent to the covariance between

fi < 1, moreover, in this implying that { 15 maximised for some g, < 0,

whatever the value of § and p,.
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Figure II: Fisher's mformation on & {bivariate logistic DDH)
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The claim s farther evidenced by the thicker
Hoe, tabelled Maw, which traverses through all
iaxunums of ¢ for every # such that —1 <0 <
1, where gy s fixed at unity; this line s sitn-
ated entirely over negative values of py. If the
clain is true, then statistical information on #
will be maximmised only when more than half of
the population do not participate in the market.
to other words, when sampling from a popula-
tion, if more than 50% of respondents announce
zero consumplion, then it is under these condi-
tions that we are best-placed to perform infer-
ence on &, for this is precisely the situation when
the amound of statistical information present on
§ can be ab its greatest. This feature is seen
empirically, with Gao et al. [4] reporting 67%
of their saunple with zero consumption, and for
Gonld [6] the proportion was 59% - both of these
DDH studies report significant dependency pa-
ranieter estimates {see Table I).

5 Bivariate Poisson DDH

In the previous example, attention focused
solely on Fisher’s information on the depen-
dency parameter. Of course, DDH models will,
in general, contain parameters in addition to the
dependency parateter. Accordingly, in this ex-
ample the impact of dependency on all DDH pa-
rameters 1s examined by inspecting elements of
Eisher’s information matrix, where (¥, ¥5**)
1s assumied distributed according to Holgate’s

bivariate Poisson distribution.  The marginal
pdf is such that Y*" ~ Poisson{s ), while &
{0 <6 < min{py, 1o)) is the covariance between
Y7t and Y

Iigure III gives four plots, against values of 8,
of Fisher's information on parameters iy, jlg,
and f, denoted respectively by 4, 43, and ip.
These measures correspond te the elements on
the leading diagonal of Fisher's information ma-
trix: B (£ log f(V) x & log (V)] where the
cobunn vector o = (u, tiy, #Y. For the three
plots, the true value of 1y s fixed ab unity,
whereas i, 1s assigned value 1, 2, 4, and finally
&. Note the differing vertical scales.

In the first plot {4, = py = 1}, it is appar-
ent that the statistical information asscciated
with # increages with the true value of §. This
is a positive finding, and one that accords with
intuition. However, also evident in the plot is
the trade-off between Fisher information on
and 0, the former virtually disappearing as #
increases. There appears here to be a “compe-
tition” amongst the parameters for statistical
information. ‘

In the second plot (y; = 1 and g, = 2}, the
trade-off in Fisher information is still in evi-
dence, however, the magnitudes of ¢ and iy are
such that neither vanishes as the true value of §
inereases. Nevertheless, the situation in respect
of Fisher Information on 4 has worsened con-
siderably: ¢s remains fairly constant and fairly
small. There is little statistical infermation on

— 286~



Figure ElE Fisher's iformation on g1y, g, and @ {bivariate Poisson DDH)
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¢ present o the medel, irrespeetive of s Lrue
vithie,

[t the remaining plots there is a vast disparity
Letween Lhe Fisher information on peg, and that
ol jy and . Both plots clearly demonstrate that
there is haraly vo Iisher information on 8, irre-
spective of the brme vadue of £, Given the scarcity
of =tatistical infornation on &, there seenws hittle
chanee of data (except perhaps il it is collected
i overy large quantity) being able to reliably
estitaate #0 wmeh less it being able to suppaort
the dependeney hypolhesis even when 0 bruly is
A PR I O

The tradeofl i ostatistical information evi-
deneed i this exvunple, suggests that DD
pedels are over-parnucterised. Tucorporating o
deperdeney parameter into a DH inodel (yield-
ing & DD model), while perliaps justified on
hehavionral grownds, manages ouly to expose a
statistical weakness in the DD model.

There is an allernative viewpoint here, one
which may be seen in the approach of Gao el
al. 1], 1o that stndy, estimation of a bivari-
alte nornnal DD model returned an insiguili-
cant estiinate of 4 The anthors then procecded
to =pecilv s second DN madel, based on an in-
verse hyperbolie sine transfonnation of ¥Yowhicl
slihnately relurned a significant estinate of 8.
Ieeting, 1 Hght ol the results of this paper,
Lo ascribe insienificance o the first DDH model
to the diffienitios caused by weak identification,
then bhis can be “overcone” by indueing suffi-

=1 and wp=2

I e — - i

0l

o i

=1t pa=R

ELI T S — e e T

W

(L] s (LX) i

clent nou-linearity into the hikelihood function.
Unfortunately, nou-linear translormations (such
as the one used by Gao el al.) may manage to
hide weak identification in a shower of paranie-
ters, but it typically comes al a cost of violating
the principle of parsimony.

6 Remarks

6.1 Sumnmary

Taken as a whole, the results of Llus paper
demonstrate that the DDH model represents
a spurious statisticel genernlisation of the DI
model.  The economic underpinuings of the
model are not allected by this conclusion, nor
does it invalidate the behavioural arguunents
motnted to justify the DDH model over the DH
model, 1t is the statistical nature of the DDH
model which is deficient. This has manifested
itsell in the empirical Hterature, with rost stud-
ies betng unable to support the existence of the
dependency parameter, and 1t has been stud-
jed in this paper under ideal theoretical cirewm-
stances through means of Fisher's tnformation.
In practice, knowing the true DD nodel 1s
no longer the huxury it has been here. The
indicator - an excessive proportion ol zeros in
the data - may provide favourable evidence
to justify fitting a DDH model, bul taken in
the broader perspective of all parameters in
the model, it may be a costly strategy. To
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the extent that mean/regression parameters are
usnally of greater lmportance in estimation, it
wonld appear safer to ignore dependency alto-
gether and specify a DI model, the statistical
information in the data can then reveal as much
about these parameters as is possible,

6.2 Other Modelling Strategies

The seemingly negative conclusion to the paper
1, however, a boon to practitioners for it al-
tows far more flexible distributional structures
to be employed for the models’ random vari-
ables. To see this, suppose a DH model is to be
fisted. By construction, the underlying decision
utility variables are independent, in which case
Flyi™oys') = Fi(y}* )P (u3"), and the pdf of ¥

becornes:

(1 Fa([]))m;z;m ify=0

Hyy =

Now only univariate distributions Fy and £
are required. This approach to DH modelling
s well-laiown.

Now the previous construction focused on the
relationship between (¥, V)") and Y. Evi-
dently thereis a second, less-explored possibility
- one that emphasizes specification of distribu-
tions for the hardle variables Y7* and ¥ Of
course, specifying a distribution for ¥* is easy,
iorest be Bernoulli distributed:

Pr(¥t =yf)l = {1 —7 1-—y{,',.y{=
LYy Wy

where y7 takes values 0 and 1, and real-valued
7 15 such that 0 < 7 < 1. The success prob-
ability + may depend on parameters and co-
variates, and can be parameterized with any
function whose range s (0,13; e.g.. the cdf of
she normal distribution vields the familiar pro-
bit, bul possibly more flexible would be the pdf
of a bela distribution. For the second hurdle
variable ¥5' asswme, for the moment, that it is
observable. Those observations would give ¥)'
the appearance of being zero-inflated, hence it
would be natural to specily a distribution for it
from amongst this class.

To illustrate the construction of the second ap-
proach, suppose that the pdl of Y,¥ is given by:

- RRET iyt >0
gwg)_{ %0 e ify; =0,
for suitable functions g and go, beth of which
may depend on parameters and covariates. Fol-
lowing the steps outlined in section 2, the pdf
of abserved consumption ¥ is:

f@}x{fm“”

L rgy

ify >0
ify =0

FU0Y + F(0) — F0)F(0) ify = 0.

It is & subject of future research to contrast the
performance of DH models hased on these two
approaches to modelling,
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